首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5516篇
  免费   1014篇
  国内免费   553篇
化学   3576篇
晶体学   49篇
力学   243篇
综合类   31篇
数学   738篇
物理学   2446篇
  2024年   3篇
  2023年   126篇
  2022年   105篇
  2021年   170篇
  2020年   224篇
  2019年   192篇
  2018年   179篇
  2017年   171篇
  2016年   282篇
  2015年   237篇
  2014年   306篇
  2013年   375篇
  2012年   474篇
  2011年   549篇
  2010年   338篇
  2009年   328篇
  2008年   356篇
  2007年   329篇
  2006年   315篇
  2005年   262篇
  2004年   193篇
  2003年   169篇
  2002年   195篇
  2001年   147篇
  2000年   121篇
  1999年   154篇
  1998年   127篇
  1997年   108篇
  1996年   103篇
  1995年   71篇
  1994年   52篇
  1993年   51篇
  1992年   47篇
  1991年   57篇
  1990年   31篇
  1989年   27篇
  1988年   22篇
  1987年   17篇
  1986年   22篇
  1985年   17篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有7083条查询结果,搜索用时 15 毫秒
11.
ABSTRACT

The complexes of H2X (X?=?O, S, Se) with hypervalent halogens YF3 and YF5 (Y?=?Cl, Br, I) have been studied. The σ-hole on the Y atom participates in a halogen bond with the lone pair on the chalcogen atom. In addition, some secondary interactions coexist with the halogen bond in most complexes. The interaction energy correlates with the nature of both X and Y atoms. In most cases, the complex is more stable for the heavier Y atom and the lighter X atom. Of course, there are some exceptions in H2X···YF3. YF3 forms a more stable complex with H2X than does YF5. These complexes are dominated by electrostatic interaction and the halogen bond involving H2S and H2Se exhibits some covalent character.

Halogen bond plays an important role in chemical reactions and multivalent halogens can regulate chemical reactions by participating in a halogen bond. Thus we compare the effect of the chalcogen electron donor on the strength and nature of halogen bonding involving multivalent halogens.  相似文献   
12.
In this paper, a periodic stochastic human immunodeficiency virus (HIV) model with distributed delay and cytotoxic T lymphocytes (CTL) immune response is investigated. First, by It ô's formula, we show that the solution with any positive initial value is global and positive. Then, by the stochastic comparison theorem, we obtain the sufficient conditions guaranteeing the existence and global attractivity of infection-free periodic solution. Furthermore, we discuss the existence of the infective periodic solution by Has'minskii theory. Finally, numerical examples are given to illustrate the results.  相似文献   
13.
The etch-stop structure including the in-situ SiN and AlGaN/GaN barrier is proposed for high frequency applications.The etch-stop process is realized by placing an in-situ SiN layer on the top of the thin AlGaN barrier.F-based etching can be self-terminated after removing SiN,leaving the AlGaN barrier in the gate region.With this in-situ SiN and thin barrier etch-stop structure,the short channel effect can be suppressed,meanwhile achieving highly precisely controlled and low damage etching process.The device shows a maximum drain current of 1022 mA/mm,a peak transconductance of 459 mS/mm,and a maximum oscillation frequency(fmax)of 248 GHz.  相似文献   
14.
To investigate the effect of ligustrazine on the pharmacokinetic profile of tanshinol after intravenous administration in rats, a sensitive liquid chromatography tandem mass spectrometry method was developed and validated for quantitative determination of tanshinol and ligustrazine in rat plasma. After prepared by protein precipitation, the analytes were separated on a Waters Acquity HSS T3 column (100 × 2.1 mm, 1.8μm) and eluted by 0.1% formic acid in water and acetonitrile at a flow rate of 0.4 ml/min. The precursor–product ion transitions were m/z 197.0 → 135.0 for tanshinol, m/z 417.1 → 255.1 for liquiritin (internal standard) in negative ion mode and m/z 137.1 → 55.0 for ligustrazine in positive ion mode. To avoid the interference of tanshinol metabolite transformation, the stability of analytes in samples collected after administration was assessed. The validated method was successfully applied to a pharmacokinetic study after intravenous administration of single tanshinol and Danshen Chuanxiongqin Injection. After Danshen Chuanxiongqin injection administration, the values of elimination half-time, area under the concentration–time curve and Co were 0.36 ± 0.13 h, 1.29 ± 0.37 μg/ml h and 10.51 ± 2.58 μg/ml for male rats, respectively. In the single tanshinol group, the corresponding values were 0.56 ± 0.24 h, 1.85 ± 0.44 μg/ml h and 14.11 ± 2.26 μg/ml for male rats—30–40% higher than those for the Danshen Chuanxiongqin Injection group. There was a significant different between male and female rats. This study provided information on the influence of ligustrazine on the pharmacokinetic characteristics of tanshinol after intravenous administration of Danshen Chuanxiongqin Injection in rats, which will be helpful for its clinical application.  相似文献   
15.
16.
17.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
18.
Inorganic planar ring-shape molecules with 4n + 2 π electrons are always the focus of experimental synthesis and theoretical research due to their potential aromaticity and stability. In this work, the whole series of five-membered heterocycle monoanions X nY5-n (X, Y = group 15 elements; n = 1-4) were thoroughly investigated by means of density functional theory calculations. They all have large formation energies and HOMO-LUMO gap energies, suggesting the potential thermodynamic and kinetic stability. Their aromaticities are comparable to that of typical aromatic hydrocarbons. Their thermal stabilities were firmly established by the ab initio molecular dynamics simulations. As most of them are predicted for the first time, their various spectra were simulated for experimental characterization. Furthermore, we demonstrate that these five-membered cyclic anions can be employed as η5-ligand to construct novel all-inorganic metallocenes, which may serve as the building blocks of low-dimensional nanomaterials.  相似文献   
19.
Studies on N2 activation and transformation by transition metal hydride complexes are of particular interest and importance. The synthesis and diverse transformations of a dinitrogen dititanium hydride complex bearing the rigid acridane-based acriPNP-pincer ligands {[(acriPNP)Ti]2(μ2-η1:η2-N2)(μ2-H)2} are presented. This complex enabled N2 cleavage and hydrogenation even without additional H2 or other reducing agents. Furthermore, diverse transformations of the N2 unit with a variety of organometallic compounds such as ZnMe2, MgMe2, AlMe3, B(C6F5)3, PinBH, and PhSiH3 have been well established at the rigid acriPNP-ligated dititanium framework, such as reversible bonding-mode change between the end-on and side-on/end-on fashions, diborylative N=N bond cleavage, the formal insertion of two dimethylaluminum species into the N=N bond, and the formal insertion of two silylene units into the N=N bond. This work has revealed many unprecedented aspects of dinitrogen reaction chemistry.  相似文献   
20.
Colloidal quantum dots (QDs) have unique optical and electrical properties with promising applications in next-generation semiconductor technologies, including displays, lighting, solar cells, photodetectors, and image sensors. Advanced analytical tools to probe the optical, morphological, structural, compositional, and electrical properties of QDs and their ensemble solid films are of paramount importance for the understanding of their device performance. In this review, comprehensive studies on the state-of-the-art metrology approaches used in QD research are introduced, with particular focus on time-resolved (TR) and spatially resolved (SR) spectroscopy and microscopy. Through discussing these analysis techniques in different QD system, such as various compositions, sizes, and shell structures, the critical roles of these TR-spectroscopic and SR-microscopic techniques are highlighted, which provide the structural, morphological, compositional, optical, and electrical information to precisely design QDs and QD solid films. The employment of TR and SR analysis in integrated QD device systems is also discussed, which can offer detailed microstructural information for achieving high performance in specific applications. In the end, the current limitations of these analytical tools are discussed, and the future development of the possibility of interdisciplinary research in both QD fundamental and applied fields is prospected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号